

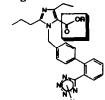
0960-894X(94)00318-1

Balanced Angiotensin II Receptor Antagonists. III. The Effects of Substitution at the Imidazole 5-Position. 14, b

Joseph B. Santella III, John V. Duncia*, Carol L. Ensinger*, 1c, Mary K. VanAtten, David J. Carini, Ruth R. Wexler, Andrew T. Chiu, Pancras C. Wong, and Pieter B.M.W.M. Timmermans.

The DuPont Merck Pharmaceutical Company, Experimental Station, P.O. Box 80402, Wilmington, DE 19880-0402

Abstract: We wish to report on a series of substituted methyl esters and amides of DMP 811, which bind to both the AT₁ and AT₂ receptor subtypes. Some of the esters bind well to both receptor subtypes in the subnanomolar range when the optimal acid isostere is present together with an ortho-fluorine substituent on the biphenylmethyl group.


The angiotensin II (AII) antagonist losartan is currently in Phase III clinical trials for the treatment of hypertension.² It acts by specific blockade of the angiotensin II subtype 1(AT₁) receptor which is responsible for the immediate pressor response induced by angiotensin II. A second subtype of angiotensin II receptor (AT₂) has also been identified in a variety of tissues³ using AT₂ selective ligands discovered at Parke-Davis, such as PD123,177.⁴ The physiological action governed by the AT₂ receptor has not been clearly defined as of yet.^{1b, 5}

AT₁-selective antagonists increase plasma renin activity and therefore circulating levels of AII.⁶ Angiotensin II binds to both the AT₁ and AT₂ sites with a slightly greater affinity for the AT₂ receptor.⁷ Since it is not clear what effects (either positive or negative) chronic AT₂ stimulation would produce when AT₁-selective drugs are dosed chronically, it seemed reasonable to develop compounds which would bind to both angiotensin II receptor subtypes.⁸

An important pharmacophore in the Parke-Davis series is the large lipophilic amide substituent on the piperidine ring.⁴ Thus to introduce AT₂ binding activity into losartan, we believed that we had to incorporate an additional judiciously placed large lipophilic group into the molecule. It was not obvious at what position this should be done. DMP 811 is a second generation AII antagonist, similar in many respects to losartan, and it is a potent antihypertensive in its own right (ED₃₀ =0.005 mg/kg i.v.; ED₃₀=0.03 mg/kg p.o., renal hypertensive rat (RHR)).⁹ We therefore decided to see what effect the synthesis of large lipophilic esters of DMP 811 would have on the AT₁/AT₂ binding profile.

Indeed esterification of DMP811 with bulky lipophilic amide groups yielded compounds which showed AT₂ receptor affinity while retaining AT₁ affinity. Molecular modeling suggested that incorporation of the benzoylbenzyl side-chain (ex. 11-13) could replace the diphenyl amide group. Of these, only the orthoisomer (ex. 11) retained good AT₂ affinity. Removal of the carbonyl group (ex. 14) lowered the AT₂ affinity by one order of magnitude leading us to believe that this carbonyl group might be participating in an H-bond with the receptor (see also exs. 22 versus 43, Table 3).

Table 1. Binding Affinities of DMP 811 Esters.

Ex. No.	R	$IC_{50} (nM)^{11}$	
		AT_1	AT ₂
DMP 811	Н	6 (4)	>1000
4	$(Ph)_2N-CO-C \equiv C-CH_2-$	40	600
5	$(n-Bu)(Bn)N-CO-C \equiv C-CH_2-$	10	400
6	(n-Bu)(Bn)N-CO-CH ₂ -CH ₂ -CH ₂ -	10	300
7	(n-Bu) ₂ N-CO-CH ₂ -CH ₂ -CH ₂ -	30	500
8	4-[(Ph) ₂ N-CO-]PhCH ₂ -	20	200
9	3-[(Ph) ₂ N-CO-]PhCH ₂ -	30	300
10	4-[(Bn)(n-Bu)N-CO-]PhCH ₂ -	8 (0.7)	200 (70)
11	2-(Ph-CO-)PhCH ₂ -	2	300
12	3-(Ph-CO-)PhCH ₂ -	9	1000
13	4-(Ph-CO-)PhCH ₂ -	9	2000
14	2-(Ph)PhCH ₂ -	3	2000
15	4-(Ph)PhCH ₂ -	3	3000

The values in parentheses for DMP811 and ex. 10 in Table 1 are the binding affinities obtained by a modified assay. ¹⁰ This assay generally displays a greater divergence between the AT₁ and AT₂ binding affinities compared to the original assay. ¹¹ Because we sought compounds which would show maximum AT₂ blockade at antihypertensive dosage levels, it was decided that the more stringent modified assay should be used in all subsequent work. Thus compounds in Tables 2-4 were tested using the modified assay.

We learned from our collaboration with Merck Research Laboratories ¹² that an enhancement in the AT2 binding affinity is observed when a lipophilic sulfonylcarbamate acid isostere is used instead of a tetrazole. Table 2 summarizes the benzoylbenzyl side-chain-containing sulfonylcarbamates. Immediately we notice that the AT2 affinity tends to be improved. The isoamylcarbamate is the best acid isostere (ex. 18).

We have previously found that substitution of an ortho-fluoro group on the biphenyl group increases the AT2 affinity. ^{1a, 13} Addition of an ortho-fluoro group onto the biphenylsulfonylcarbamate moiety yielded the compounds in Table 3. This modification led to compounds with nearly equal ("balanced") affinities for both the AT₁ and AT₂ receptors. Substituting various other H-bonding groups in place of the carbonyl group led to compounds that were less balanced. The benzoylbenzyl side-chain produced the most balanced compounds. For example, replacement of the C=O group of ex. 22 with -O-, -S-, -SO-, -SO₂-, -NH-CO-, and -CO-NH-(exs. 27, 43-45 55, and 56) led to good AT₁ binding, but slightly less potent AT₂ binding. The decreased AT₂ affinity of ex. 43 relative to that of ex. 22 suggests the importance of the C=O group in binding to the

Table 2. R⁵ Ester Biphenylsulfonylcarbamates.

AT₂ receptor. The 2-thiophenyl analog (ex. 28) shows more potent AT₂ binding affinity than its 3-thiophenyl isomer (ex. 30). An explanation for this is that the sulfur atom of 28 can better mimic the position of the carbonyl oxygen atom of the 2-(Ph-CO-)PhCH₂- side-chain of ex. 22. Interestingly, the (pyrid-2-yl)benzyl analog (ex. 33) shares the same binding affinity as the 2-thiophen-2-yl analog 28. Here the pyridyl nitrogen also mimics the position of the carbonyl oxygen atom of the 2-(Ph-CO-)PhCH₂- side-chain of ex. 22. Replacement of the ester by an amide (Table 4) led to only a slight loss in AT₂ binding affinity.

Table 3. R⁵ Ester ortho-Fluorobiphenylsulfonylcarbamates.

Ex. No.	\mathbb{R}^2	R ⁵	IC ₅₀ (nM) 10	
			AT_1	AT_2
19	phenethyl	2-(Ph-CO-)PhCH ₂ -	0.57	0.69
20	n-propyl	2-(Ph-CO-)PhCH ₂ -	0.28	1.6
21	isobutyl	2-(Ph-CO-)PhCH ₂ -	0.5	1.0
22	isoamyl	2-(Ph-CO-)PhCH ₂ -	0.5	0.7
23	n-butyl	2-(Ph-CO-)PhCH ₂ -	0.2	0.9
24	isoamyl	3-(Ph-CO-)PhCH ₂ -	0.6	0.9
25	n-propyl	3-(Ph-CO-)PhCH ₂ -	0.3	10
26	isoamyl	2-(t-butyl-CO-)PhCH ₂ -	0.3	3
27	n-butyl	2-(Ph-O-)PhCH ₂ -	0.6	3 3 3 3
28	isoamyl	2-(thiophen-2-yl)PhCH ₂ -	0.8	3
29	n-propyl	2-(thiophen-2-yl)PhCH ₂ -	0.5	3
30	isoamyl	2-(thiophen-3-yl)PhCH ₂ -	0.6	20
31	n-propyl	2-(thiophen-3-yl)PhCH ₂ -	0.3	20
32	n-propyl	2-(pyrimidin-5-yl)PhCH ₂ -	0.8	10
33	isoamyl	2-(pyrid-2-yl)PhCH ₂ -	0.3	3
34	isoamyl	2-(Ph)PhCH ₂ -	3	9
35	isoamyl	PhOCH ₂ CH ₂ CH ₂ CH ₂ -	0.2	3 9 2 2 2 7
36	isoamyl	PhOCH ₂ CH ₂ CH ₂ -	0.1	2
37	isoamyl	PhCH ₂ OCH ₂ CH ₂ CH ₂ -	0.1	2
38	isoamyl	(N-phthalimido)CH ₂ CH ₂ -	0.2	
39	isoamyl	(N-phthalimido)CH ₂ CH ₂ CH ₂ -	0.1	3
40	isoamyl	2-(CH ₃ O-)PhCH ₂ -	0.1	1
41	heptyl	2-(CH ₃ O-)PhCH ₂ -	1	10
42	isoamyl	2-(isoamyloxy)PhCH ₂ -	3	10

Table 3., continued.							
Ex. No.	\mathbb{R}^2	R ⁵	IC ₅₀ (nM) ¹⁰				
			AT_1	AT_2			
43	isoamyl	2-(Ph-S-)PhCH ₂ -	1	2 -			
44	isoamyl	2-(Ph-SÓ-)PhCH ₂ -	0.2	2			
45	isoamyl	2-(Ph-SO ₂ -)PhCH ₂ -	0.4	5			
46	isoamyl	Ph-CO-CH ₂ CH ₂ CH ₂ -	0.1	5 5 2			
47	isoamyl	Ph-CO-CH ₂ -	0.1	2			
48	isoamyl	PhS-CH ₂ CH ₂ CH ₂ -	0.2	2			
49	isoamyl	Ph-SO-CH ₂ CH ₂ CH ₂ -	0.2	1			
50	isoamyl	Ph-SO ₂ -CH ₂ CH ₂ CH ₂ -	0.2	2			
51	isoamyl	(n-Bu)(Bn)N-CO-(CH ₂) ₃ -	0.2	5			
52	isoamyl	(Ph)(H)N-CO-(CH ₂) ₃ -	0.2	5 3			
53	isoamyl	(Ph)(H)N-CO-(CH ₂) ₂ -	0.1	3			
54	n-pentyl	(Ph)(H)N-CO-(CH ₂) ₂ -	0.1	1			
55	isoamyl	2-(Ph-CO-NH-)PhCH ₂ -	0.3	1			
56	isoamyl	2-(Ph-NH-CO-)PhCH ₂ -	0.3	i			
57	isoamyl	Ph-CO-CH(Ph)-	0.8	3			
58	isoamyl	isoamyloxy-CÓ-N(Ph)-(CH ₂) ₂ -	0.2	4			
59	isoamyl	Ph-CO-N(Ph)-(CH ₂) ₂ -	0.1	2			

Table 4. R⁵ Amide ortho-Fluorobiphenylsulfonylcarbamates.

Synthesis

The esters in Table 1 were synthesized as shown in Scheme 1. Suzuki coupling ¹⁴ of bromide **65** with boronic acid **66**¹⁵ yielded **67**. Benzylic bromination and alkylation yielded **68** which was simultaneously saponified and detritylated to yield carboxylic acid-tetrazole **69**. Tritylation (**70**), followed by esterification and detritylation yielded ester **71**. The esters in Tables 2 and 3 were made by the procedure outlined in Scheme 2. The carboxylic acid of biphenylsulfonamide **72**¹⁶ was esterified to yield ester biphenylsulfonamide **74**. Reaction with a chloroformate yielded product **76**. The amides in Table 4 were made by converting **73** to an amide and hydrolysing the t-butyl group (**75**) followed by reaction with a chloroformate to yield product **77**. Scheme **1**

Scheme 1, continued.

Reagents: a. (Ph₃P)₄Pd, tetrabutylammonium bromide, sodium carbonate (aq), toluene, Δ, 4h; b. NBS, benzoyl peroxide, CCl₄, Δ; c. methyl 4-ethyl-2-n-propylimidazole-5-carboxylate, K₂CO₃, DMF, rt, 24h; d. 1.0 N NaOH, THF, MeOH, 60 °C, 48h; e. Ph₃CCl, Et₃N, CH₂Cl₂, rt, 4h; f. R⁵Br or R⁵OMs, K₂CO₃, DMF, rt, 24h; g. MeOH, reflux, 3h, followed by immediate silica gel chromatography

Scheme 2

Reagents: a. R⁵-Br, K₂CO₃, DMF, rt, 24h; b. carbonyldiimidazole, THF, Δ, followed by R⁵ONa; c. R⁵NH₂, DCC, CH₃CN, rt; d. trifluoroacetic acid, rt; e. R²OCOCl, DMAP, py, CH₂Cl₂, rt, 24h

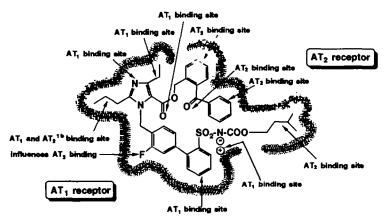


Figure 1. Pharmacophores required for binding to the AT₁ and AT₂ receptors.

Conclusion

We have successfully incorporated AT₂ binding affinity into DuP 753-like AT₁ antagonists, resulting in compounds displaying nearly equal binding affinities for both the AT₁ and AT₂ receptor subtypes. The critical features necessary for this dual binding affinity are summarized in Figure 1. In addition to binding, these

compounds also exhibit good i.v. and oral antihypertensive activity (ex. 20, ED30 (RHR) = 0.08 mg/kg i.v. and 0.7 mg/kg p.o. and ex. 22, ED30 (RHR) = 0.05 mg/kg i.v. and 0.9 mg/kg p.o.).

Acknowledgement.

The authors wish to thank W.J. Greenlee, E. Allen, L. Chang, S. de Laszlo, T. Glinka, D. Kim, N. Mantlo, D. Ondeyka, and R. Rivero of Merck Research Laboratories and R. E. Olson and M. L. Quan of DuPont Merck Research Laboratories for their helpful discussions and collaboration aimed at the discovery of balanced AT₁/AT₂ receptor antagonists. The authors also wish to thank R. Bernard, E. Crain, R. Hallowell, T. Leathers, D. E. McCall, T. T. Nguyen, C. A. Watson, and A. M. Zaspel for their excellent technical assistance.

References

- 1. (a). For paper I in this series, see Quan, M.L.; Olson, R.E.; Carini, D.J.; Ellis, C.D.; Lalka, G.K.; Liu, J.; VanAtten, M.K.; Wexler, R.R.; Chiu, A.T.; Wong, P.C.; Timmermans, P.B.M.W.M. Bioorg. Med. Chem. Lett., 1994, 4, in press. (b). For paper II in series and for additional information regarding the pharmacological significance of the AT₂ receptor, see Olson, R.E.; Liu, J.; Lalka, G.K.; VanAtten, M.K.; Wexler, R.R.; Chiu, A.T.; Nguyen, T.T.; McCall, D.E.; Wong, P.C.; Timmermans, P.B.M.W.M. *This Journal*, previous paper. (c) Present address: Biogen, Inc., 14 Cambridge Center, Cambridge, MA 02142. 2. Duncia, J.V.; Carini, D.J.; Chiu, A.T.; Johnson, A.L.; Price, W.A.; Wong, P.C.; Wexler, R.R.; Timmermans, P.B.M.W.M. *Med. Res. Rev.* 1992, 12, 149-191.
- 3. Wong, P.C.; Chiu, A.T.; Duncia, J.V.; Herblin, W.F.; Smith, R.D.; Timmermans, P.B.M.W.M. Trends
- Endocrinol. Metab. 1992, 3, 211-217.
- Blankley, C.J.; Hodges, J.C.; Klutchko, S.R.; Himmelsbach, R.J.; Chucholowski, A.; Connolly, C.J.; Neergaard, S.J.; Van Nieuwenhze, M.S.; Sebastian, A.; Quinn, J.; Essenburg, A.D.; Cohen, D.M. J. Med. Chem. 1991, 34, 3248-3260.
- 5. Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Duncia, J.V.; Nguyen, T.T.; Timmermans, P.B.M.W.M. Receptor, 1990, 1, 33-40.
- Munafo, A.; Chrite, Y.; Nussberger, J.; Shum, L.Y.; Borland, M.; Lee, R.J.; Waeber, B.; Biollaz, J; Brunner, H.R. Clin. Pharmacol. Ther. 1992, 51, 513-521.
 Chiu, A.T.; Leung, K.H.; Smith, R.D.; Timmermans, P.B.M.W.M. In Cellular and Molecular Biology of
- the Renin-Angiotensin System; Raizada, M.K.; Phillips, M.I.; Sumners, C., Eds.; CRC Press: Boca Raton, 1993; pp. 245-271.
- 8. For other papers disclosing compounds which bind to both the AT₁ and AT₂ receptor subtypes see: (a) de Laszlo, S.E.; Quagliato, C.S.; Greenlee, W.J.; Patchett, A.A.; Chang, R.S.L.; Lotti, V.J.; Chen, T.-B.; Scheck, S.A.; Faust, K.A.; Kivlighn, S.S.; Schorn, T.S.; Zingaro, G.J.; Siegl, P.K.S. J. Med. Chem., 1993, 36, 3207-3210. (b) Mantlo, N.B.; Kim, D.; Ondeyka, D.; Chang, R.S.L.; Kivlighn, S.D.; Siegl, P.K.S.; Greenlee, W.J. Bioorg. Med. Chem. Lett.. 1994, 4, 17-22. (c) Naylor, E.M.; Chakravarty, P.K.; Costello, C.A.; Chang, R.S.; Chen, T.-B.; Faust, K.A.; Lotti, V.J.; Kivlighn, S.D.; Zingaro, G.J.; Siegl, P.K.S.; Wong, P.C.; Carini, D.J.; Wexler, R.R. Bioorg. Med. Chem. Lett.. 1994, 4, 69-74.

 9. Carini, D.J.; Ardecky, R.J.; Ensinger, C.L.; Pruitt, J.R.; Wexler, R.R.; Wong, P.C.; Huang, S.-M.;
- Aungst, B.J.; Timmermans, P.B.M.W.M. Bloorg. Med. Chem. Lett.. 1994, 4 (1), 63-68.

 10. Chang, R.S.L.; Siegl, P.K.S.; Clineschmidt, B.V.; Mantlo, N.B.; Chakravarty, P.K.; Greenlee, W.J.; Patchett, A.A.; Lotti, V.J. J. Pharmacol. Exp. Ther., 1992, 262 (1), 133-138.
- Patchett, A.A.; Lotti, V.J. J. Pharmacol. Exp. Ther., 1992, 202 (1), 133-138.

 11. Chiu, A.T.; McCall, D.E.; Price, W.A.; Wong, P.C.; Carini, D.J.; Duncia, J.V.; Wexler, R.R.; Yoo, S.E.; Johnson, A.L.; Timmermans, P.B.M.W.M. J. Pharmacol. Exp. Ther., 1990, 252, 711.

 12. (a) Glinka, T.W.; de Laszlo, S.E.; Siegl, P.K.S.; Chang, R.S.L.; Kivlighn, S.D.; Schorn, T.S.; Faust, K.A.; Chen, T.B.; Zingaro, G.J.; Lotti, V.J.; Greenlee, W.J. Bioorg. Med. Chem. Lett., 1994, 4, 81.

 (b) Mantlo, N.B.; Kim, D.; Ondeyka, D.; Chang, R.S.L.; Kivlighn, S.D.; Siegl, P.K.S.; Greenlee, W.J. Bioorg. Med. Chem. Lett.. 1994, 4 (1), 17-22.

 13. Quan, M.L.; Olson, R.E.; Carini, D.J.; Ellis, C.D.; Lalka, G.K.; Liu, J.; VanAtten, M.K.; Wexler, R.R.; Chiu, A.T.; Wong, P.C.; Timmermans, P.B. M. W.M., 207th, A.C.; National Maeting, (1994) San Diago, C.A.
- Chiu, A.T.; Wong, P.C.; Timmermans, P.B.M.W.M. 207th ACS National Meeting, (1994) San Diego, CA, MEDI 202.
- Miyaura, N.; Yanagi, T.; Suzuki, A. Syn. Commun. 1981, 11, 513-319.
 Lo, Y.S. U.S. Patent no. 5,130,439 (1992).
- 16. For the synthesis of similar biphenylsulfonamide starting materials, see reference 8c.